In cartography, a map projection is any of a broad set of transformations employed to represent the curved two-dimensional surface of a globe on a plane. In a map projection, coordinates, often expressed as latitude and longitude, of locations from the surface of the globe are transformed to coordinates on a plane. Projection is a necessary step in creating a two-dimensional map and is one of the essential elements of cartography.
All projections of a sphere on a plane necessarily distort the surface in some way and to some extent. Depending on the purpose of the map, some distortions are acceptable and others are not; therefore, different map projections exist in order to preserve some properties of the sphere-like body at the expense of other properties. The study of map projections is primarily about the characterization of their distortions. There is no limit to the number of possible map projections. More generally, projections are considered in several fields of pure mathematics, including differential geometry, projective geometry, and manifolds. However, the term "map projection" refers specifically to a cartographic projection.
Despite the name's literal meaning, projection is not limited to perspective projections, such as those resulting from casting a shadow on a screen, or the rectilinear image produced by a pinhole camera on a flat film plate. Rather, any mathematical function that transforms coordinates from the curved surface distinctly and smoothly to the plane is a projection. Few projections in practical use are perspective.[citation needed]
Most of this article assumes that the surface to be mapped is that of a sphere. The Earth and other large celestial bodies are generally better modeled as oblate spheroids, whereas small objects such as asteroids often have irregular shapes. The surfaces of planetary bodies can be mapped even if they are too irregular to be modeled well with a sphere or ellipsoid. Therefore, more generally, a map projection is any method of flattening a continuous curved surface onto a plane.[citation needed]
The most well-known map projection is the Mercator projection. This map projection has the property of being conformal. However, it has been criticized throughout the 20th century for enlarging regions further from the equator. To contrast, equal-area projections such as the Sinusoidal projection and the Gall–Peters projection show the correct sizes of countries relative to each other, but distort angles. The National Geographic Society and most atlases favor map projections that compromise between area and angular distortion, such as the Robinson projection and the Winkel tripel projection.
Metric properties of maps
An Albers projection shows areas accurately, but distorts shapes.
Many properties can be measured on the Earth's surface independently of its geography:
Area
Shape
Direction
Bearing
Distance
Map projections can be constructed to preserve some of these properties at the expense of others. Because the Earth's curved surface is not isometric to a plane, preservation of shapes inevitably requires a variable scale and, consequently, non-proportional presentation of areas. Similarly, an area-preserving projection can not be conformal, resulting in shapes and bearings distorted in most places of the map. Each projection preserves, compromises, or approximates basic metric properties in different ways. The purpose of the map determines which projection should form the base for the map. Because maps have many different purposes, a diversity of projections have been created to suit those purposes.
Another consideration in the configuration of a projection is its compatibility with data sets to be used on the map. Data sets are geographic information; their collection depends on the chosen datum (model) of the Earth. Different datums assign slightly different coordinates to the same location, so in large scale maps, such as those from national mapping systems, it is important to match the datum to the projection. The slight differences in coordinate assignation between different datums is not a concern for world maps or those of large regions, where such differences are reduced to imperceptibility.
#qgis #shortvideo #space #astronomy #blackhole #maps #mapping #projectionmapping #projections #arcgis #arcgispro
موسیقی: Do It
نوازنده: @iksonmusic