Python Machine Learning Project Cyberbullying Detection on Social Networks ClickMyProject

Опубликовано: 01 Ноябрь 2024
на канале: ClickMyProject
2,687
29

The use of social media has grown exponentially over time with the growth of the Internet and has become the most influential networking platform in the 21st century. However, the enhancement of social connectivity often creates negative impacts on society that contribute to a couple of bad phenomena such as online abuse, harassment cyberbullying, cybercrime and online trolling. Cyberbullying frequently leads to serious mental and physical distress, particularly for women and children, and even sometimes force them to attempt suicide. Online harassment attracts attention due to its strong negative social impact. Many incidents have recently occurred worldwide due to online harassment, such as sharing private chats, rumours, and sexual remarks. Therefore, the identification of bullying text or message on social media has gained a growing amount of attention among researchers. The purpose of this research is to design and develop an effective technique to detect online abusive and bullying messages by merging natural language processing and machine learning. Two distinct freatures, namely Bag-of Words (BoW) and term frequency-inverse text frequency (TFIDF), are used to analyse the accuracy level of four distinct machine learning algorithms.


********************************
Including Packages
=======================
Base Paper
Complete Source Code
Complete Documentation
Complete Presentation Slides
Flow Diagram
Database File
Screenshots
Execution Procedure
Readme File
Addons
Video Tutorials
Supporting Softwares

Specialization
=======================
24/7 Support
Ticketing System
Voice Conference
Video On Demand *
Remote Connectivity *
Code Customization **
Document Customization **
Live Chat Support *
Toll Free Support *

Call Us:+91 967-774-8277, +91 967-775-1577

Shop Now @ http://clickmyproject.com
Get Discount @
Chat Now @ https://bit.ly/3rzVhHE
Visit Our Channel: https://bit.ly/3eY0h3M
Mail Us: [email protected]