Let's explore how Large Language Models (LLMs) like ChatGPT, Claude, Gemini generate text, focusing on decoding strategies that introduce randomness to produce human-like responses. We break down key sampling algorithms such as top-k sampling, top-p sampling (nucleus sampling), and temperature sampling. Additionally, we dive into an alternative method for text generation, typical sampling, based on information theory.
References:
[1] Locally Typical Sampling, by Clara Meister et al: https://arxiv.org/pdf/2202.00666
Video sections:
00:00 How LLMs generate text (Overview)
00:56 Why Randomness in text generation?
02:12 Top-k
03:22 Top-p
04:44 Temperature
06:04 Entropy and Information Content
07:12 Typical Sampling
▬▬▬▬▬▬▬▬▬▬▬▬ CONNECT ▬▬▬▬▬▬▬▬▬▬▬▬
🖥️ Website: https://www.assemblyai.com
🐦 Twitter: / assemblyai
🦾 Discord: / discord
▶️ Subscribe: https://www.youtube.com/c/AssemblyAI?...
🔥 We're hiring! Check our open roles: https://www.assemblyai.com/careers
🔑 Get your AssemblyAI API key here: https://www.assemblyai.com/?utm_sourc...
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
#MachineLearning #DeepLearning