Definite Integral #

Опубликовано: 21 Декабрь 2024
на канале: DellyMaths Concepts
30
3

Definition and Notation

The definite integral

∫baf(x)dx∫abf(x)dx

is an integral to be evaluated between a lower limit aa and upper limit bb.

By the fundamentaltheorem of calculus, if F(x)F(x) is the antiderivative of f(x)f(x), then

∫baf(x)dx=F(b)−F(a).∫abf(x)dx=F(b)−F(a).

When computing a definite integral, it is conventional to use square brackets in the following way to denote that the antiderivative F(x)F(x) is to be evaluated between limits aa and bb.

∫baf(x)dx=[F(x)]ba=F(b)−F(a).