Random Forest Python Example from Scratch using SKLearn - [Deployment Included]

Опубликовано: 25 Октябрь 2024
на канале: Yiannis Pitsillides
21,310
530

Learn how to run Decision Trees, Random Forest and eXtream Gradient Boost Trees in Python using SKLearn in Jupyter Notebooks. All the code is provided. We start with the problem formulation phase, then EDA phase, then running and evaluating different models. We also show how to adjust the hyperparameters of the models. At the end, we show how to deploy the model predictions in Power BI. Hope you enjoy this video!

Data Analytics Course Link:
http://ipidata.teachable.com/

Support the channel on Patreon:
  / data360yp  

Git Repo:
https://github.com/Pitsillides91/Pyth...

Video Part 1:
   • Decision Tree Algorithm in Machine Le...  

Tutorial Overview:
How to run Random Forest Machine learning in Python SKLearn
How to run eXtream Gradient Boost (XGB) machine learning model in Python
How to optimize random forest; hyperparameters tuning
How to optimize XGB; hyperparameters tuning
How to create a confusion matrix in Python
How to deploy a machine learning model in python

Yiannis Pitsillides on Social Media:
  / pitsillides91  
https://www.instagram.com/ypexists/?h...
https://www.pinterest.co.uk/pitsillid...
  / 1500092413449073  

Tags:
how to run random forest in python,
random forest,
random forest python,
random forest classifier,
random forest algorithm in machine learning,
random forest machine learning,
xgboost,
xgboost hyperparameter tuning python,
xgboost vs random forest,
how to tune random forest classifier
how to tune random forest
random forest classifier in machine learning
random forest classifier python
random forest example in python
xgboost example in python
predicting churn machine learning python
end to end ml example
Random Forest Python Example from Scratch