Python Pandas Tutorial | Concatenate Pandas Dataframe - P12
#technologycult #pythonformachinlearning #pythonpandas
Topic to be covered :
Concatenate Dataframes
Table of Content
00:31 Import the libraries Pandas and Numpy
01:15 Create the dataframe and load the data
01:46 how to use Pandas pd.concat to concatenate the dataframes when axis = 0
02:50 how to use Pandas pd.concat to concatenate the dataframes when axis = 1
05:47 how to append record to a dataframe
Concatenating Dataframes
df1 = pd.DataFrame()
ID = [1001,1002,1003,1004]
Name = ['Virat Kohli','Susan Whistler','Micheal Scofield', 'Sarah Wilson']
Gender = ['Male','Male','Male','Female']
Country = ['India','Australia','England','Canada']
df1['ID'] = ID
df1['Name'] = Name
df1['Gender'] = Gender
df1['Country'] = Country
df2 = pd.DataFrame()
ID = [2001,2002,2003,2004]
Name = ['Ramos Djavedi','Sanjeev Walia','Sneha Chowdhury','Lincoln Burrows']
Gender = ['Male','Male','Female','Male']
Country = ['US','India','Qatar','Canada']
df2['Name'] = Name
df2['ID'] = ID
df2['Gender'] = Gender
df2['Country'] = Country
df3 = pd.concat([df1,df2],axis=0)
df4 = pd.concat([df1,df2],axis=1)
Create a new row to append
new_row = pd.Series([3001,'Steve Waugh','Male','Australia'], index=['ID', 'Name', 'Gender','Country'])
Append row
df5 = df3.append(new_row, ignore_index=True)
All Playlist of this youtube channel
====================================
1. Data Preprocessing in Machine Learning
• Data Preprocessing in Machine Learnin...
2. Confusion Matrix in Machine Learning, ML, AI
• Confusion Matrix in Machine Learning,...
3. Anaconda, Python Installation, Spyder, Jupyter Notebook, PyCharm, Graphviz
• Anaconda | Python Installation | Spyd...
4. Cross Validation, Sampling, train test split in Machine Learning
• Cross Validation | Sampling | train t...
5. Drop and Delete Operations in Python Pandas
• Drop and Delete Operations in Python ...
6. Matrices and Vectors with python
• Matrices and Vectors with python
7. Detect Outliers in Machine Learning
• Detect Outliers in Machine Learning
8. TimeSeries preprocessing in Machine Learning
• TimeSeries preprocessing in Machine L...
9. Handling Missing Values in Machine Learning
• Handling Missing Values in Machine Le...
10. Dummy Encoding Encoding in Machine Learning
• Label Encoding, One hot Encoding, Dum...
11. Data Visualisation with Python, Seaborn, Matplotlib
• Data Visualisation with Python, Matpl...
12. Feature Scaling in Machine Learning
• Feature Scaling in Machine Learning
13. Python 3 basics for Beginner
• Python | Python 3 Basics | Python for...
14. Statistics with Python
• Statistics with Python
15. Sklearn Scikit Learn Machine Learning
• Sklearn Scikit Learn Machine Learning
16. Python Pandas Dataframe Operations
• Python Pandas Dataframe Operations
17. Linear Regression, Supervised Machine Learning
• Linear Regression | Supervised Machin...
18 Interiew Questions on Machine Learning and Data Science
• Interview Question for Machine Learni...
19. Jupyter Notebook Operations
• Jupyter and Spyder Notebook Operation...