#dummyencoding #onehotencoding #machinelearning #technologycult
Python for Machine Learning - Session # 96
Topic to be coverred - One-Hot Encoding V/S Dummy Encoding
Table of content
0:00 Introduction
01:00 What is One-hot Encoding and Dummy Encoding
02:56 How to implement One-hot Encoding
03:38 How to implement Dummy Encoding
03:54 drop_first parameter in Dummy Encoding
04:31 How to delete the specfic column
04:54 How to prefix the column
05:28 How to apply Dummy Encoding on more than one column
06:16 How to apply get_dummies on multiple column and have a different prefix based on the column name
06:46 How to to apply get_dummies on multiple column and drop one column from each categorical variable
Link for One-hot Encoding - • Python for Machine Learning - Part 17...
Link for Label Encoding - • Python for Machine Learning | Label E...
Code Starts Here
============
import pandas as pd
df = pd.read_csv('dataset.csv')
df.drop('Id',axis=1,inplace=True)
1. How to implement one-hot encoding
df_one_hot = pd.get_dummies(df['week_day'])
2. How to implement Dummy Encoding
df_dummy_encoding = pd.get_dummies(df['week_day'],drop_first=True)
3. If you want to delete any specfic column then
df_dummy_encoding_myselection = df_one_hot.drop('Sunday',axis=1)
4. If you want to prefix the column
df_dummy_variable_prefix = pd.get_dummies(df['week_day'], prefix='day_')
5. If we want to apply get_dummies on multiple column
df_dummy_encoding_multiple_column = pd.get_dummies(df[['week_day','gender']])
6. If we want to apply get_dummies on multiple column and have a different prefix based on the column name
df_dummy_diff_prefix = pd.get_dummies(df[['week_day','gender']],prefix=['day_','Gend_'])
7. If we want to apply get_dummies on multiple column and drop one column from each categorical variable
df_drop_firt_multiple_column = pd.get_dummies(df[['week_day','gender']],drop_first=True)
All the playlist of this youtube channel
========================================
1. Data Preprocessing in Machine Learning
• Data Preprocessing in Machine Learnin...
2. Confusion Matrix in Machine Learning, ML, AI
• Confusion Matrix in Machine Learning,...
3. Anaconda, Python Installation, Spyder, Jupyter Notebook, PyCharm, Graphviz
• Anaconda | Python Installation | Spyd...
4. Cross Validation, Sampling, train test split in Machine Learning
• Cross Validation | Sampling | train t...
5. Drop and Delete Operations in Python Pandas
• Drop and Delete Operations in Python ...
6. Matrices and Vectors with python
• Matrices and Vectors with python
7. Detect Outliers in Machine Learning
• Detect Outliers in Machine Learning
8. TimeSeries preprocessing in Machine Learning
• TimeSeries preprocessing in Machine L...
9. Handling Missing Values in Machine Learning
• Handling Missing Values in Machine Le...
10. Dummy Encoding Encoding in Machine Learning
• Label Encoding, One hot Encoding, Dum...
11. Data Visualisation with Python, Seaborn, Matplotlib
• Data Visualisation with Python, Matpl...
12. Feature Scaling in Machine Learning
• Feature Scaling in Machine Learning
13. Python 3 basics for Beginner
• Python | Python 3 Basics | Python for...
14. Statistics with Python
• Statistics with Python
15. Data Preprocessing in Machine Learning
• Data Preprocessing in Machine Learnin...
16. Sklearn Scikit Learn Machine Learning
• Sklearn Scikit Learn Machine Learning
17. Linear Regression, Supervised Machine Learning
• Linear Regression | Supervised Machin...