Python Pandas Map function | Zip | Use of python dictionary for mapping the values of a column

Опубликовано: 13 Декабрь 2018
на канале: technologyCult
3,172
43

Python Pandas Map function | Zip | Use of python dictionary for mapping the values of a column

Python for Machine Learning - Session # 92

Topic to be covered - How to map dataset column using map function.

The map() function is used to map values of Series according to input correspondence.

Used for substituting each value in a Series with another value, that may be derived from a function, a dict or a Series.

Code Starts Here
===============

import pandas as pd

df = pd.DataFrame()

df['ID'] = [1111,2222,3333,4444,5555]
df['Name'] = ['Venkat','Sridhar','Shaqib','Nitin','Dupesh']
df['City'] = ['Hyderabad','Kolkata','Mumbai','Bangalore','Jaipur']

city_to_state = {'Hyderabad' :'Telangana',
'Kolkata':'West Bengal',
'Jaipur': ' Rajasthan',
'Bangalore': 'Karnataka',
'Mumbai': 'Maharastra'}

df['State'] = df['City'].map(city_to_state)


df1 = pd.read_excel('city-state.xlsx',0)


df2 = pd.read_excel('city-state.xlsx',1)

city_to_state1 = dict(zip(df2.City,df2.State))

df1['State'] = df1['City'].map(city_to_state1)

All the playlist of this youtube channel
========================================

1. Data Preprocessing in Machine Learning
   • Data Preprocessing in Machine Learnin...  

2. Confusion Matrix in Machine Learning, ML, AI
   • Confusion Matrix in Machine Learning,...  

3. Anaconda, Python Installation, Spyder, Jupyter Notebook, PyCharm, Graphviz
   • Anaconda | Python Installation | Spyd...  

4. Cross Validation, Sampling, train test split in Machine Learning
   • Cross Validation | Sampling | train t...  

5. Drop and Delete Operations in Python Pandas
   • Drop and Delete Operations in Python ...  

6. Matrices and Vectors with python
   • Matrices and Vectors with python  

7. Detect Outliers in Machine Learning
   • Detect Outliers in Machine Learning  

8. TimeSeries preprocessing in Machine Learning
   • TimeSeries preprocessing in Machine L...  

9. Handling Missing Values in Machine Learning
   • Handling Missing Values in Machine Le...  

10. Dummy Encoding Encoding in Machine Learning
   • Label Encoding, One hot Encoding, Dum...  

11. Data Visualisation with Python, Seaborn, Matplotlib
   • Data Visualisation with Python, Matpl...  

12. Feature Scaling in Machine Learning
   • Feature Scaling in Machine Learning  

13. Python 3 basics for Beginner
   • Python | Python 3 Basics | Python for...  

14. Statistics with Python
   • Statistics with Python  

15. Data Preprocessing in Machine Learning
   • Data Preprocessing in Machine Learnin...  

16. Sklearn Scikit Learn Machine Learning
   • Sklearn Scikit Learn Machine Learning  

17. Linear Regression, Supervised Machine Learning
   • Linear Regression | Supervised Machin...  

18 Interview Questions on Machine Learning, Artificial Intelligence, Python Pandas and Python Basics
   • Interview Question for Machine Learni...  

19. Jupyter Notebook Operations
   • Jupyter and Spyder Notebook Operation...